Numerical modelling of 3D hard turning using arbitrary Lagrangian Eulerian finite element method

نویسندگان

  • P. J. Arrazola
  • T. Özel
چکیده

In this paper, 3D Finite Element Method (FEM)-based numerical modelling of precision hard turning has been studied to investigate the effects of chamfered edge geometry on tool forces, temperatures and stresses in machining of AISI 52100 steel using low-grade Polycrystalline Cubic Boron Nitrite (PCBN) inserts. An Arbitrary Lagrangian Eulerian (ALE)-based numerical modelling is employed for 3D precision hard turning. The Johnson-Cook plasticity model is used to describe the work material behaviour. A detailed friction modelling at the tool-chip and tool-work interfaces is also carried. Work material flow around the chamfer geometry of the cutting edge is carefully modelled with adaptive meshing simulation capability. In process simulations, feed rate and cutting speed were kept constant and analysis was focused on forces, temperatures and tool stresses. Results revealed good agreements between FEM results and those reported in literature about experimental ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical modelling of 3-D hard turning using Arbitrary Eulerian Lagrangian finite element method

In this paper, 3-D Finite Element Method (FEM) based numerical modelling of precision hard turning has been studied to investigate the effects of chamfered edge geometry on tool forces, temperatures and stresses in machining of AISI 52100 steel using low-grade polycrystalline cubic boron nitrite (PCBN) inserts. An Arbitrary Lagrangian Eulerian (ALE) based numerical modelling is employed for 3-D...

متن کامل

Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation

This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...

متن کامل

Volume-Filling Effects on Sloshing Frequency in Simplified and Explicit Dynamic Finite Element Models of Tank Wagons During Braking and Turning

Numerical analysis of fluid sloshing in tank wagons is amongst essential research ideas that are focused by railway engineers. The free surface of fluid becomes unstable and turns into a dynamic complex non-linear problem for fluid-structure interaction (FSI). In this paper, initially, the dynamic response of the tank, including lateral force analysis and pressure distribution during braking, i...

متن کامل

Coupled Eulerian-Lagrangian (CEL) Modeling of Material Flow in Dissimilar Friction Stir Welding of Aluminum Alloys

In this work, the finite element simulation of dissimilar friction stir welding process is investigated. The welded materials are AA 6061-T6 and AA 7075-T6 aluminum alloys. For this purpose, a 3D coupled thermo-mechanical finite element model is developed according to the Coupled Eulerian-Lagrangian (CEL) method. The CEL method has the advantages of both Lagrangian and Eulerian approaches, whic...

متن کامل

Pipeline upheaval buckling in clayey backfill using numerical analysis

Offshore pipelines used for oil and gas transportation are often buried to avoid damage from fishing activities and to provide thermal insulation. Thermal expansion and contraction of the pipeline during operation can lead to lateral or upheaval buckling. A safe buried pipeline design must take into account a reliable evaluation of soil uplift resistance and pipe embedment depth. While the cost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008